martes, 27 de junio de 2017

Los últimos desarrollos


PWM75VO

Llevo ya unos cuantos meses tratando de dar por finalizados los desarrollos de nuevos controladores, pero los seguidores de este blog habrán visto que siempre aparece alguna nueva idea que me hace darle alguna vuelta de tuerca más al tema. El problema de esto, es que si me dedico a la electrónica, abandono la construcción de la maqueta, pero por otro lado me resulta imposible no desarrollar una nueva idea sobre electrónica cuando veo la posibilidad de una mejora. Por otra parte, todos los desarrollos en electrónica va a acabar siendo utilizados en mi maqueta, así que mientras no tenga claro qué elementos voy a utilizar, me resulta complicado continuar la construcción de la misma.

Eso mismo me ha ocurrido en las últimas semanas. Tenía la idea de cómo hacer un controlador con el sistema de "velocidad objetivo". Si podía hacer eso, tenía muy claro que quería usarlo en la maqueta, poniendo uno para cantón, pero eso suponía cambiar la idea de utilizar controladores PWM71 que ya se han visto en fotografías y videos del cuadro de control. Eso suponía prácticamente rehacer todo el panel central del cuadro de control, así que había que tomar una decisión rápidamente.

Bueno, pues el controlador con velocidad objetivo lo he desarrollado y hasta le he puesto nombre: PWM75VO. y es el que vemos en la imagen de la cabecera. La verdad es que la idea de cómo hacerlo era buena, y relativamente sencilla. De hecho las simulaciones de ordenador funcionan perfectamente. Sin embargo la realización práctica se ha complicado mucho, entre otras cosas porque es un sistema "muy analógico", es decir que las variaciones de tensión son importantes, y eso hace que el sistema sea demasiado inestable y que los circuitos que manejan este tipo de señales resulten un tanto caprichosos.

Por otra parte, ¡como siempre!, me he pasado de ambicioso, ya que ese circuito, además de controlar la velocidad debía detectar el paso de la locomotora por cada señal, de manera que al pasar por una señal verde se encendiese el led y pulsador verde y automáticamente la locomotora comenzase a acelerar hasta su velocidad objetivo, al pasar ante una señal amarilla se encendiese el led y pulsador amarillo y la locomotora empezase a frenar, y al pasar por una señal roja, se encendiese el led y pulsador rojo y la locomotora se parase automáticamente. Este funcionamiento recuerda mucho al sistema ASFA (Anuncio de Señales y Frenado Automático) empleado en el ferrocarril español durante muchos años. La verdad es que todo eso ha funcionado, pero de manera bastante inestable sin que haya conseguido corregirlo

 Así que después de un par de tandas de circuitos impresos fabricadas en China,  y multitud de horas dedicadas al desarrollo diseño y montaje de ese prototipo de la imagen de la cabecera, he decidido dejar de invertir tiempo y dinero en ese proyecto, y quedarme con los dos controladores con simulación de inercia que ya se han visto por aquí: PWM73SI y PWM74TM y abandonar el proyecto de un simulador por velocidad objetivo, y por lo tanto no modificar el cuadro de control previsto para mi maqueta.

Así que al final y como resumen de este tema que me ha ocupado los dos últimos años, tendremos ( y estarán en la tienda) dos controladores con simulador de inercia:

PWM73SI

PWM74TM
El sistema de ambos controladores es muy parecido y en ambos hay un sistema de simulación de inercia que permite que la velocidad del tren suba de cero a su valor máximo en un tiempo ajustable entre 3 segundos y unos 70 segundos.

La diferencia del PWM74TM es que incorpora un temporizador que permite que la aceleración y la frenada se puedan hacer de manera automática, y no sea necesario mantener pulsado el botón de aceleración o de freno durante todo el tiempo que queremos que dure esa aceleración o frenada. Con el PWM74TM esta aceleración o frenada se mantiene automáticamente durante un tiempo ajustable entre 3 y 40 segundos. Esto permite iniciar una frenada progresiva por ejemplo cuando el tren se acerca a una señal roja, de forma automática, o realizar una arrancada progresiva, cuando la reñal pasa a verde, también de forma automática.

En los siguientes videos, podemos ver el funcionamiento de ambos controladores. En ambos casos se ve el funcionamiento del control de inercia, que es prácticamente idéntico en ambos y también la posibilidad que tienen ambos de incorporar el velocímetro VELAN para indicar la velocidad del tren que están manejando. También en ambos casos vemos la posibilidad de manejo con un joystick, posibilidad que resulta muy interesante en estos controladores que tienen simulación de inercia.










En el video del PWM74TM vemos, además de lo que es común con su compañero. el manejo del temporizador, y sobre todo, al final del video, una demostración de cómo funciona el sistema de parada automática. Se han puesto en el circuito dos "señales" (unos leds montados en una placa) que mediante un BLKS03 y pulsadores se pueden encender y apagar. En el video vemos como cuando las señales están en verde, el tren circula normalmente, pero cuando la señal principal pasa a rojo y la señal avanzada pasa a amarillo (que sería "anuncio de parada") al pasar el tren por esa señal, inicia automáticamente una frenada progresiva que le lleva a pararse delante de la señal principal en rojo.

Hacer esto es bastante sencillo, como puede verse en el siguiente esquema:

En primer lugar vemos que el PWM74PM alimenta normalmente la vía (lineas azules) y en la vía no hay ningún corte de carril ni nada parecido. Es decir: las paradas y arrancadas que vemos se deben al controlador, no a cortar o conectar la alimentación de las vías.

Por otro lado tenemos dos semáforos, el primero SA verde/amarillo que hace la función de señal avanzada, y el segundo SP verde/rojo que hace la función de señal principal. Para manejar estas señales se ha colocado un BLKS03 con dos pulsadores P1 y P2.  Para tratar de reproducir el caso más habitual, se ha hecho un montaje para semáforos de ánodo común, asi que los ánodos de todos los leds van unidos directamente al positivo de la alimentación (rojo), Los cátodos con sus correspondientes resistencias de unen a las bornas S y R de la clema inferior del BLKS03. mientras que la borna central C queda unida al negativo de la alimentación.

Asi que pulsando P2 activamos la entrada S y el BLKS03 se pone en estado S conectando las bornas C de las clemas a las bornas S. Con ello el negativo de la alimentación llega a los cátodos de los leds rojo y amarillo y éstos se encienden (líneas violeta) . Pulsando P1 activamos la entrada R, pasando BLKS03 al estado R y conectando por tanto las bornas R a las bornas R con lo que el negativo de la alimentación llega a los cátodos de los leds verdes y estos se encienden (lineas marrones)

Obsérvese que con todo lo anterior lo único que hemos hecho es encender las luces verdes al pulsar P1 y encender las luces roja o amarilla de las señales al pulsar P2, pero nada que influya en absoluto en la marcha de los trenes.

El siguiente tema es que situamos un sensor, en este caso un sensor Hall un poco antes de la señal avanzada. Naturalmente cuando un tren pasa sobre ese sensor, lo activa y si su señal (linea verde) llega a la borna B del PWM74TM éste inicia una parada progresiva. Sin embargo no queremos que siempre que un tren pase sobre el sensor se active la parada, sino solamente cuando las señales están en amarillo y rojo. Para conseguir eso, el cable de señal del sensor pasa por la borna superior del BLKS03. Así que la señal sólo llega al controlador si el BLKS03 está en la posición S (luces amarilla y roja encendidas) y no llega si el BLK está en posición R (luces verdes encendidas)

Como se ve en el video, es difícil conseguir que la parada se produzca con precisión en el punto en que está la señal roja, ya que unas veces la locomotora se para demasiado pronto y otras demasiado tarde. Hay que ajustar con sumo cuidado los valores de inercia y temporización para conseguirlo. Sin embargo es muy fácil solucionar ese tema, pues basta poner un segundo sensor en el punto donde queremos que se detenga la locomotora. Este sensor activará la función S del controlador, con lo que la locomotora se parará inmediatamente. Aunque no haya llegado a ese punto con velocidad cero, irá ya muy despacio, así que el efecto será el deseado

En el video se ve también que una vez que la locomotora se para, para que vuelva a arrancar se pulsa el botón de arrancada temporizada de forma manual. Si queremos automatizar esta acción, por ejemplo para que la locomotora arranque cuando se libera el cantón siguiente, bastará que la señal que indica la apertura del cantón  active la función  T del controlador para que se active la arrancada progresiva.

Con todo esto queda claro que se puede montar un bloqueo automático en el cual los trenes paran y arrancan de forma progresiva "obedeciendo" a las señales principales y avanzadas, siempre y cuando hagamos que cada cantón tenga su propio controlador PWM74TM. De hecho si en el gráfico anterior, consideramos que los pulsadores P1 y P2 se sustituyen por sensores de vía situados en los puntos de cambio de cantón, esto ya es casi el esquema de un cantón del sistema de bloqueo automático. De hecho las señales no son más que un adorno, de modo que podemos prescindir de las avanzadas o incluso de ambas,

Desde hace muchos años, los aficionados a los trenes han querido montar sistemas de bloqueo automático en los que se evite el feo efecto de que el tren se pare de manera brusca ante una señal en rojo (por haber entrado a un tramo de parada quedándose sin tensión) En los sistemas digitales se usa cada vez más el sistema ABC que introduce una asimetría el la señal digital en los tramos que preceden a las señales, para que los trenes hagan una parada progresiva delante de los semáforos. Sin embargo, para el caso de trenes analógicos,  los antiguos sistemas denominados "módulos de frenada" no han tenido nunca demasiado éxito, seguramente porque funcionan a base de generar una bajada progresiva de la tensión de alimentación, y ya sabemos que la respuesta de los motores de continua a las bajadas de tensión son muy irregulares.

La ventaja del PWM74TM está en que, al ser un sistema PWM, la bajada de velocidad se produce por variación del ancho de pulso, manteniendo constante la tensión de pico. Basta ver el video, para darse cuenta que este sistema es mucho más perfecto, consiguiendo frenadas y arrancadas espectacularmente progresivas.










lunes, 22 de mayo de 2017

Cuesta arriba


Después de un par de semanas un tanto parado, he reanudado el trabajo con la construcción de mi maqueta.

Tocaba continuar poniendo vía, y en un largo tramo sin incidencia alguna (léanse desvíos etc) para pasar desde el nivel de la estación oculta hasta el nivel de la estación principal. Se trata por lo tanto de un trabajo bastante monótono, pero en fin, es necesario. De ahí viene el título de este artículo, porque se me ha hecho un poco cuesta arriba, hacerlo, y coincide con que se trata de realizar una verdadera cuesta arriba.

Como en ocasiones anteriores he grabado un vídeo que muestra cómo he hecho esta primera parte de la rampa, es decir la colocación de la base de la vía.

Este es el video:



Como se ve, comienza con unas imágenes de la operación de cortar las pistas de vías. Previamente había hecho la impresión a partir del programa, y el pegado de dichas hojas sobre tableros de contrachapado, pero no lo he repetido aquí porque ya quedó muy bien recogido en el  artículo Estación oculta I  y no era cuestión de repetirlo.

Sin embargo ya se vió en aquél video que la operación de cortar las pistas  mediante una sierra caladora de mano, resultaba difícil y hasta arriesgada. Como aún me quedaba (y me queda) mucha tela por cortar, me dediqué a buscar alguna herramienta, que sin ser cara ni aparatosa me permitiera cotar estas tiras de contrachapado con facilidad y seguridad. La verdad es que no sabía muy bien lo que buscaba, pero tuve la suerte de encontrar el Leroy Merlin el artefacto que aparece en el video. Se trata simplemente de una placa metálica en la que podemos fijar una sierra caladora de mano (¡cualquier sierra, no una marca determinada!) De manera que el motor queda bajo la placa y la hoja asoma hacia arriba por un taladro. Todo el dispositivo se puede fijar mediante gatos al borde de una mesa. Bueno en mi caso, lo fijé al borde de una tabla que a su vez se sujetaba con sargentos a la mesa. Al final se tiene una sierra de mesa, que aunque no sea de total precisión, ni seguramente valdrá para espesores de madera un poco gruesos, a mi, para esta labor me ha venido de perlas. Tiene también guías para hacer cortes rectos, aunque yo no las he usado. Es de la marca Wolfcraft

Luego viene la colocación de todas esas piezas en la maqueta, y la forma de ir haciendo la elevación progresiva, desde la cota cero que es la de la estación oculta a la estación principal. Por cierto, que aquí he hecho un cambio de proyecto importante: En el diseño inicial había hecho que esta rampa tuviese una pendiente de 15 milésimas, lo cual, siempre que me dejan digo que es lo máximo que deberíamos hacer en una maqueta, Con esa pendiente la estación principal quedaba en la cota 130. Sin embargo cuando empece a poner esta rampa, y vi lo que suponían esas 15 milésimas me pareció una pendiente excesiva. Sobre todo me dió miedo una cosa: Una de las virtudes de esta maqueta es que está diseñada para trenes bastante largos, de por ejemplo locomotora y seis vagones largos.Por eso pensé que quizá algún tren de esta longitud tuviera dificultad para superar esas 15 milésimas y que sería una lástima tener que limitar la longitud de algún tren por esa razón. Por otro lado el disminuir la pendiente no tiene ningún problema, porque dejando la estación principal a la cota 100 hay espacio más que de sobra para intervenir en la estación oculta, en caso de descarrilamiento.

Asi que aunque el programa me había impreso la cotas de un montón de puntos, al final esas cotas no me han valido, y he tenido que recalcular las alturas otra vez para llegar a la cota 100. Con esto la pendiente de este tramo ha quedado en unas doce milésimas (exactamente 12,2 º/ºº) . A mi siempre me llama la atención, cuando algún contertulio de algún foro dice que en su maqueta tiene pendientes del 3% y del 4%. o sea lo que serían, ferroviariamente dicho, de 30 o de 40 milésimas. Reconozco que para poder subir de un nivel a otro, si no se tiene espacio suficiente, no hay más remedio que hacer esas rampas excesivas, y que las escalas como la N o la H0 superan gracias a los aros de goma de las ruedas, pero bueno, por eso yo no cambio la escala Z por nada.





jueves, 11 de mayo de 2017

Como hongos




Aclaro que en España se usa la expresión "crecer como hongos" para aplicarla a algo que crece o se multiplica con gran rapidez, y quizá también con una cierta anarquía. Viene a cuento de que después de haber escrito aquí que renunciaba a seguir desarrollando más controladores, y como ya explicaba en el artículo anterior, me han surgido nuevas ideas que me pueden permitir hacer con facilidad, no solo lo que tenía previsto inicialmente, sino alguna cosa más avanzada e incluso rehacer de una forma más sencilla algo de lo que ya había dado por resuelto. Asi que en poco tiempo han surgido varios modelos más y todavía no ha terminado la cosecha.

El caso más flagrante es el del controlador PWM73 (a la izquierda en la imagen de la cabecera) que ya había dado por bueno, e incluso estaba a la venta en la tienda. Resulta que con el nuevo sistema que expliqué en el artículo anterior, puede construirse de una forma más simple, y por lo tanto más barata En el centro de la imagen tenemos el nuevo PWM73SI que tiene exactamente las mismas funciones, como se puede comprobar viendo que tiene exactamente los mismos cinco botones y un potenciómetro, aunque éste último, con un botón de mando mayor.

Claro es que este nuevo controlador no lleva indicador de velocidad, tal como lo tenía el anterior, pero es que ahora, el nuevo PWM73SI permite la conexión de un velocímetro que puede ajustarse para que indique aproximadamente la velocidad a escala de la locomotora que está manejando, y no sólamente un porcentaje de velocidad como el PWM73 antiguo. En la imagen de la izquierda se puede ver esta combinación del PWM73SI con el velocímetro.

Como decía, este controlador tiene todas las funciones que veíamos en el vídeo PWM70 es  decir todas las funciones externas de parada y arranque automático que permitían realizar los trenes lanzadera, las vías reversibles, los bucles de retorno, y por supuesto el manejo con Joystick y la conexión a un ordenador o un Arduino. Por cierto en este último punto hay una diferencia porque en el PWM73 el retorno de velocidad era digital, lo que requería ocho cables, mientras que en el PWM73SI  el retorno de velocidad es analógico, así que basta con un cable.

He comentado que el velocímetro analógico se puede ajustar para que la cifra mostrada corresponda a la velocidad en km/h del tren que estamos controlando. Desde luego debido al diferente comportamiento de unas locomotoras respecto de otras la velocidad indicada es solo aproximada, pero es una ayuda muy importante para evitar la tentación de hacer correr a nuestros trenes en el mundial de Fórmula 1

Como demostración de cómo se realiza este ajuste, y de los resultados que se obtienen se puede ver el siguiente video:



En el video se ve la forma de proceder para ajustar el velocímetro, que se basa simplemente en medir la velocidad a que se desplaza la locomotora, y ajustar el aparato para que muestre esa velocidad.

Para medir la velocidad de las locomotoras se cronometra un determinado recorrido que previamente se ha medido. En el vídeo se indican los cálculos a efectuar, y el procedimiento se basa en lo explicado en el artículo: ¿Cual corre más? de Agosto de 2016.

Por cierto que en este vídeo vemos por primera vez funcionando el PWM73SI  (La sigla SI indica Simulador de inercia) y se aprecia que funciona perfectamente aunque la instalación es muy provisional. Hay algún momento en que se ve alguna arrancada espectacularmente lenta, y en general el control es muy preciso y muy estable. Como se aprecia el montaje para la prueba consta de un PWM73SI junto con un joystick casero que se ha visto ya en artículos anteriores, y el velocímetro analógico, bautizado como VELAN.

Como comentaba antes, aunque aún no he realizado cálculos, seguramente la combinación del PWM73SI con el velocímetro VELAN saldrá más barata que el antiguo PWM73, a pesar de que éste puede marcar directamente velocidades en Km/h

No me ha resultado fácil seleccionar este voltímetro, que junto con un pequeño circuito que yo añado, se convierte en el velocímetro. Es un instrumento de panel fabricado por Velleman y resulta un poco grande y caro, pero no he podido encontrar otro aparato que cumpliera las necesidades y fuese más pequeño y barato.

Seguramente alguien está pensando que en internet se encuentran voltímetros y amperímetros digitales pequeños y baratos. No hay ningún problema en conectar uno de estos voltímetros chinos al PWM73SI, y de hecho sus conexiones están preparadas para ello. El problema es que esos aparatos tienen escala fija, normalmente de 0 a 12 o de 0 a 20 V mientras que el Velleman se puede ajustar a una escala de milivoltios, que es como realmente se emplea aquí. Así que si conectamos uno de esos pequeños voltímetros obtendremos una lectura entre 0 y 5 Voltios, siendo imposible que marque un valor de velocidad real. (salvo que hagamos un circuito complicado). En la imagen se ha conectado uno de estos voltímetros y está marcando 3.8 Voltios Con um poco de astucia se ha tapado el punto decimal con un rotulador, de manera que parece que se lee 38 km/h. pero con una tensión de 3.8 Voltios, que es lo que realmete marca,  cualquier locomotora va a circular a una velocidad mucho mayor, y la forma de conseguir que se muestre la cifra real es bastante complicada